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ABSTRACT

-"A formulation for determining the electromagnetic

field penetration through a circular aperture is developed -

using Babinet's principle and the singularity expansion

method. Computational procedures for determining the

penetration field of the aperture are discussed and a low

frequency check of the procedures is proffered.
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INTRODUCTION

In the study of various problems of electromagnetic compatibility

it is necessary to determine the penetration field of an aperture. At

low frequencies a quasi static solution is available, and at high

frequencies the Kirchhoff's solution is available.
2 Also a rigorous

-t 3
solution developed by Flammer is available. He applies Babinet's

principle and determines the scattering from the disk equivalent of an

aperture in a conducting plate by considering the disk as a limiting

form of an oblate spheroid and constructs vector wave function solutions

to the Helmholtz wave equation in oblate spheroidal coordinates. However

no numerical results are presented; but it is expected that the greatest

amount of energy penetrates the aperture near the first resonances of the

aperture, the intermediate frequency region.

Recently the singularity expansion technique has been found to be

4
useful in the study of electromagnetic pulse interaction. In principle

one should be able to take Flammer's solution and develop singularity

4A

expansions for the induced current and chargeas Baum did in treating

the sphere. -However, identifying and calculating the natural frequencies

and modes maybe difficult. An alternative treatment used here is to

develop an integral equation for the induced current density on a Babinet

equivalent disk, solve the integral equation numerically using the method

of moments, and apply the singularity expansion method numerically similar

5
to Tesche.
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(With the singularity expansion so lution for the induced current

density on the Babinet equivalent disk the scattered fields are readily

determined. _-An -application. of Babinet 's principle then yield. the field

penetrating the aperture in a conducting plate. Computational procedures.

for determining the penetration field are discussed and a low frequency..

check of the procedures is proffered.
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ANALYSIS

--'The solution for-the electromagnetic field penetrating an aperture

in a-conducting plane may be determined by solving the complimentary disk
3.

problem and applying Babinet's principle. The electromagnetic form of

Babinet's principle states that if (E1,Hj) is the scattered field when

(EfH') is the field incident in the positive z direction on a perfectly

conducting disk lying in the plane z=O, then

z~O (ia)

2 = 1  2-0

are-the diffracted fields when the wave

E 2 CH i  , 2 TI E (Ib)

is incident in the positive z direction on the complimentary perfectly

conducting screen with an aperture. Here ; -V is the intrinsic wave

impedance of the medium surrounding the aperture or disk. In the case of

the aperture the total field in the half space z < 0 is formed from the

superposition of the incident wave, the reflected wave in the absence of

an aperture, and the diffracted field (Es,HS). In the half space z 0,

(i,,AB) is the total field penetrating the aperture.2' 2

To determine the scattered or diffracted field from the aperture it is

necessary to obtain the induced surface current density on the disk. The

integral equation for the surface current density, s on a disk centered at

the origin and in the z-O plane is6
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.... .n[(k) =It -  k) ,)G(~')dS

+ grad' div ('G)G(r r")d (2)
S

where t - r" and t j with

G(- I,)

-~ I I-).4I

The incident field may be expanded in transverse magnetic (TM) and

transverse electric (TE) cylindrical, modes. 'For the TM case there is no

magnetic field component along the z-axis and for the TE case there is no

electric field component along the z-axis. An arbitrary electromagnetic

field may be expressed as the linear combination of a TM part and a TE

part (see Appendix I). These two cases are treated separately.

TM Mode Excitation
6

The form of the TM mode expansion for the incident plane wave field is

- e m(r) cos mr
m'0 L,m

E' (r).sin-Jkz cos 9 i (3)

2,m . n,]e°

where 8i is the angle of incidence, the angle between the direction of pro-

pagation and the direction of the positive z-axis. The corresponding form
6

of the induced current distribution on the disk is

4-0J(r) -E 0 [K _(r) coo m# r + 2 , (4)
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Using the representations (3) and (4) in (2) yields coupled integral

equations for Ke (r) and Ko (r) to be solved for each value of m. They are

Ee (r')-(l' G+(lr) Ke (r)rdr
I'm 0-P

0

+2 d fG (r jr) ( d+ 1)K e (r)dr

-j[Gi(rlr') -'G3+i(rlr')] K 0(r)rdr

0

+Jmd G m(r r')K0 (r)dr ( 5)
k2 dr' 2,m

and

E 0 (r') J.k G( ''- G1 (r r')lK r d
2 ,m [1r M 1(l) I'mK(rrd

0

2m a
*-~ - kr' G(r r') (ri + 1) Ke (r) dr

-~ ~ 2r + f lrm')Gir)lor I'm

0

2 a2m~... f GM(rlr')K 0 (rWdr1  (6)

2,m
6~

.............................0*



(_ where

GrJre-JkV (rr')+2rr'(1cos ) .. ,.-- ,G. (r Ir v) 7T e --j ko
2COS modo (7)• .1' (r-r-) +2rr' (-coso)"

Apparently Gm as shown above possesses a logarithmic singularity at r-r'.
Since (7) must be evaluated numerically a more convenient form is needed.

After some mathematical manipulation (7) becomes

GM(rlr') 2 [JkR •/Rdo

fo 
l

+2 K l r-r l
r+-r' 7r+r'/ (8)

where

R- (r-r') 2 + 4rr' sin 2 '

and g is the complete elliptic integral of the first kind. Note that the
integral in (8) does not possess a singularity at r-r' and maybe .evaluated
numerically.-. -; - -' .- . .. ' .-- . ,.- .c.

A different singularity appears to occur when r'-O and r=O unless a
restriction is placed on the current expansion.-'The evaluation of (7) at
r'-O yields - ,: .

SJ--kr
Gm(rIO) - 6 mo (9)

where 6mo is the usual Kronecker delta. In order for the respective integrals

in (5) and (6) to remain integrable at r-0 the following is required

K ,0(r) 0 (const.)r (10)( ~r 0



The physical equivalent to (10) is the requirement of a finite charge

distribution at r=0..-

Another restriction to be satisfied by the current distribution is

the radial component of the current must vanish at the edge of the disk.

That is,

Ke (a)0 (11)
1,m

for all m. Further note that one may set

K2 0 (r) 0 (12)

Because of the singularities in Gm the derivatives of the integrals

must be evaluated carefully. If the derivatives are taken inside the integrals

the integration is performed by using Cauchy principal values. To avoid

this additional complication the derivatives of the integrals will be

evaluated numerically by using finite differences.

TE Mode Excitation . "

6
The form of the TE mode expansion for the incident plane wave field is

- r E*.

zE' (r) sinm rm=0- L .m -..

S,m(r) cos m e-jkz cos 8i (13)

6
And the corresponding form of the induced current distribution on the disk is

( [ r (r) sin mor - K ' (r) cos mi € (14)
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Using the representations (13) and (14) in (2) yields coupled Integral

equations for 10(r) and Ke (r) to be solved for each value of m. The1,m - -2,m

form of the integral equations is exactly the same as (5) and (6) when the

following transformations are made.-()

Ee (r)---E 0K (r)
I'm I'm

E9 (r) )Ke (r)
2 .m 2,m (5

Ke (r) *(rt)r(6

2,o r2 0

Another restriction to be satisfied by the current expansion is

K 0 (a) 0 (17)

For convenience one may set

1(0 (r)=0 (18)

for all r.
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NUMERICAL SOLUTION

Because of the inherent complexity of the integral equations for

the induced surface current density an analytic solution appears to be

virtually impossible to obtain. Therefore a numerical solution technique,
7

namely the method'of moments, is employed. Moment expansions that satisfy

the restrictions on the induced surface current densities are

(in)(rr )+ai" (r( -r)
N (%P+1 r P, P +

Kl,m(r) Z £ U(r;rp+l,rp) (19)

and
N S(m)(rr)+B (r +i-r)K2,~r  =Z p+t1r-pl+p ( P+ --- U(r;rp+,p (20)

K2 ,(r) =1 r p+l -rp

where
U~~r+,Ip rp <S r < rp+ I

0 otherwise

rp = (p-l)Ar , Ar = a/N

(in) .. ... - .- ,.o

a( =0
N+1

a(0) 0
1

B(0) = 0I:I

If (19) and (20) are substituted into (5) and (6), and the resulting

equations are satisfied at r=rp, p=l,2,...N, a system of linear equations

are obtained for the a 's and the 8p'S. This procedure is sometimes referred

10
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( to as point matching or colocation. The resulting system of equations

is

2N+1
E 11(m,I,J)F(m,J) r(m,i) (21)
J-1

where I-iN and J-l,N

ii~,IJ) h-.[F.(.-ii J)+F(mf1IJ
Ar

+ F2(m-1,I,J) + F2(m+1,IJ)

+ 2 )22[F5(mI+lsJ) - F5(m,IJ)

+F6(m,I+1,J) - F6(mIJ)]

+j[F3(mI+lJ) -F3(m,I,j]

-rj+[F4mIl~- F4(mI,j)]

for I=1,N and J=1,NI-

U[(m,IJ+N) =-I [FI(m-1IIJ) -Fl(M+IlJ)

ArL

+ F2(m-1I,J) -2ml,,

2m [+ y F3(m,I+1,J) - F3(mIJ)

.1 k(Ar)L

+ F4(m,I+1,J) -F4(mIJ)]



for I=1,N+1 and J=1,N

ll(ni,I+N,J) = r - lm-l , - F1Gn4-1,I,j)

+ F2(m-1,I,J) - F2(nt+1IIJ)]

- 2 2F5(m,I,J) + F6(rn,IJ)
kA r IL

+ rj.... F3(m,I,J)

for I=1,N+l, J=1,N+1

](m,I+N,J+N) -k r [Fl(m- 1,I,J) + F1(m+1,1,j)
Ar I

+ F2(m-1,I,J) + F2(m+1IIj)

2m 2~ [F(m, I,J) + F4(m,lJ)]

and (n

Eimri I=,,
r(m,I) 'J (23)

0(m) rI=N) 1N+,2N+

(23)
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At this point the induced surface current density may be obtained by

solving the foregoing system of linear equations using the digital1 computer.

Obviously a system of equations must be solved for each modal current.

Andreasen 6who treats the body of revolution suggests that the maximum

number of modes needed is

ml %, ka sinei +6 (24)
max

for ka sin 81u3 and m~max4 a~.0

13



SINGULARITY EXPANSION METHOD

According to the singularity expansion method the natural frequencies

may be obtained by searching for the zeros of the determinant of the fore-

going system matrix H(m,k). From this point forward in the analysis the

Laplace transform frequency variable s - jck is used for the frequency.

Thus the natural frequencies are obtained from

det [l(m's] - 0 (25)

for frequencies s. independent of the index m. Note that the natural

frequencies for the TE modes are the same as for the TM modes.

The solution for the induced current distribution is

F(m's) = R - (mss)r(m,s) (26)

for each mode. Applying the singularity expansion method (26) becomes9*

F(ms) = E - CT (m)r (,s) (27)
(a S-S.

where Ma(m) is defined as the natural mode vector and is the solution to

the equation

t(msa)Ma(m) = 0 
(28)

and Ca(m) is referred to as the coupling vector, and satisfies the equation

1 (m, sa)C( a(m) - 0 (29)

The Mal(m) and Ca(m) are normalized according to
4

C T(m) [. ll(m s] Ma~rn) 1(30)

Here the class II form for the coupling coefficient is used.

14
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(. Actually F~m,s) represents the mth cylindrical mode contribution to

the current distribution., Summing the cylindrical mode contributions,.,

see (4) and (14), yields the final form for the current distribution. The

foregoing (25)-(30) apply for both TE and TM excitation. For TE excitation

use the TE mode field components in r as defined in (13) and (23) and for

TM excitation use the TM mode field components in r as defined in (3) and

(23).

To obtain the time domain response of the induced current distribution
5

on the disk the appropriate Laplace transform of 
(27) is evaluated. It is

T sat

F(m,t) - 1. u(t)Ma(m)Ca(m)r(m, sa) s- (31)
aL as

where U(t) is a diagonal square matrix of unit Heaviside functions which

serves to enforce the requirements of causality.

. . . . . . . . . . . . . . . . . . . ..-..,.-.--<r

1. .
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SCATTERED FIELD

Once the induced current distribution of the disk is known then the

scattered field may be readily determined. The electric field is

.... 2,. ds-(32)

4E-(r') f [(fJ.V V + k' R ds (32)

S

and the magnetic field

~(r)= ds (33)

F S
where-

VeJk = k + JkR (34)

and

e-jkR k2(4s.R)R+I(jk l
(s - R R

[3 (Is - ) .-Tsl" Jk (35)R1

4^ -

with R=r'-r and R=R/R. Note that 1s is given by (4) or (14) depending upon

the mode of excitation. The far field approximations to (32) and (33) may

be readily determined by neglecting the R
- 2 and R- 3 terms appearing in (34)

and (35).

In order to verify the numerical procedures that are employed, low

frequency excitation may be considered and the equivalent dipole moments of

the scattered field obtained. These are

P f -illsds (36)

16



M 0 f rx ds (7

From using a quasi-static approximation it is found that

3

- _ 4 a3 (z.Hinc) z 39

substituting the current representations (4) and (14) into (36) and (37)

yields

Pox = j f [4)r - K ir]rdr (40)

a
( = -1 a [Ke, (r) - K3 (r) ] rdr (41)

o= - - e I(rdr (42)

At low frequency (40)-(42) may be compared with (38) and (39) to check
4.

the numerical solutions for the components of Js .

The field penetrating an aperture in an infinite plate may be determined

by applying the electromagnetic form of Babinet's principle. As discussed

previously the field transformations (La) and (ib) are used with the

scattered field from the Babinet equivalent disk to determine the field

diffracted by an aperture. The scattered field from the disk is given by

(32) and (33).

17



CONCLUSION

The problem of the electromagnetic field penetration through an

aperture in a perfectly conducting plate is formulated by using Babinet's

principle. A numerical solution for the induced current distribution on

the Babinet equivalent disk is developed. This numerical solution is

formulated both as a direct moment method solution and a singularity

expansion solution. Finally computational procedures for determining

the penetration field of the aperture are discussed and a low frequency

check on the computational procedures is proffered.
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APPENDIX I

(

For convenience consider.a plane wave propagating in the direction

e = - ei and to be polarized in the direction forming an angle ep with

the unit vector -0. Here 0 is the usual polar angle of the spherical

coordinate system. Therefore the incident electric field may be resolved

into two components

- E" ; + E y (Al)

where

EII = E cos 0 e- jk(z cos 0 -x sin e d (A2)
. p

E =E sin 6 e-Jk(z cos ei-x sin 0 i) (A3)
0 p

Then by the principle of superposition each component of is considered

to be a plane wave. The magnetic field associated E will h., e no z

component - a TM wave. And the z component of E will be zero - a TE wave.

TM case

If the electric field E is expanded in a Fourier series and E set

equal zero, then (Al) yields

.. ..... [E M(r) cos m r

+ E° (r) sin m ;] e-jkz cos i
2,m

where

20



EeI' (r) - -cosO 0pCosO £j J m i(kr sin 6 1E0

0~ p~ im (rsi

E0  (r) - cos e coso e i 3 (R r Bi E2,m p i m m kr sine E

with (r, z) as the usual cylindrical coordinates and E m as Neumann's

number.

TE case

If the electric field E1 is expanded in a Fourier series and E set

equal zero, then (Al) yields

E =r [E I (r~) sin m r

+ E (r) cos mo4] ejk co

where

E 0  (r) -sine6 cm jMIlm i (kr sinG01 ) EI m Pm kr sinO o

E e -(r) =sin 0 Cm J I(kr sin i)E

21
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APPENDIX II

The various integral functions used in (m,I,J) are defined here.

For J 0 1+1, .>1
Ar

Fl(m,I,J) - f (u+rjl)Gm(rijlu+rj_ )udu

0

Ar (u+r 3 1  [I-rj.. -u'
+2 f Jr1 )1  K L - du

f rIljjr+rj-l+

0

where

GM(u Jv) 2 f I[e- cos(2mE)-] /RI de

0

R _ 4(uv) 2 + 4uv sin20

K() [a. + al2 + a2 C 
4 + + a44

-[b +  b62 + 2 + b 6 84 Inc
[ 0 b1 + 2 ~ b 3 ~ + b4C

r- (I-I)Ar

rj - (J-1)Ar

Ar - a/N

ao m 1.386 294 4 bo 
= 0.5

aI - 0.096 663 443 bI - 0.124 985 94

*2 - 0.035 900 924 b2 = 0.068 802 486

a3 - 0.037 425 637 b3 - 0.033 283 553

a4 - 0.014 511 962 b4 - 0.004 417 870

22



Fo J-1T1, 1>1

Ar
FI(m,IJ) (u+rji-) Gm(r I u~rj..)udu

f0

+ 2 L Iu K -1 d

2+ (Ar) q,

where

q,)ao -b [kn.

For

[e ikAr (1+JkAr)- e1 eikr J- M..O

F1(MI,J)

0 otherwise

F2(m.,J)

For Ji. 1+19 '1. Th--
Ar

+ r (rJl.u)K r..J++u du

f r1+rj+i-u ri+rj+i-uj

23



For 3-I+1, I>1

Ar
F2m,I,, ) mrj, iuGmr3 1j-u)udu

2/ r+r-u(r +-u)u [r1-r3 +lJ+u Id
+ 2 r+rj+- Krj~r _u

+ (Ar) 2 q,

For I-I

[je,l(-kAr)ll -J kr3~l

k2e 
0

F2(m,I,J)

F(,, 
0 

otherw Iise

For J I and J I +1

F3(mIJ=10~ Gm(riIu+rji,)du

2fr _________

+2 r1 r..~ I +r J 1 +u d-

0

For 3-1+1 
A

F3(mI.J) G m(rilu4~r J-1)du

Ar jru
1 K rrdu

+2 r L +UjJ r1+rj...+u I J-
fAr

14



( For J-I

F3 (m, I, J) Gr lrJ1)du

+ 2 )A 1 K [r -j-uld
r2 I +r J 1 +u [ri+riI+U

r

F4(m,I,J)

For J y~I and J I +1

F4(m,I,J) - Ar G~,ljud

+ 2f 1,+,+ K r- 1du

r1 r0 - ri+rJj+-u]

For J-I

F4(m,J) f- mrljud

+2Ar F rI-rj+l+uld
+ f ri+r+=u r ri+rj+i -uJd

+Ar
rI

( 25



For J-I+l

Ar
F4(mI,J) f-G m(r I r J+iu)du

0

+ 2 }!..)r K r jj+r-uK -u du

0

+Ar
r II

F5 (m, I, J)

For J I, I> 1

F5(mIJ) Gfm (r+lr u)udu

Ar [ri-rj-..-u1 d
+ 2 -r +r 1 +u K Lr +r31+ud

F5mIJ f- I~ -u,+u
0

(Ar
+ r 1
0

26



C For I-1

fAr -klr J-+u IJ e1  1  udu m-0

F5 (m, I,J)

0 otherwise

F6(m.1,J)

For J 1, I, >1

Ar
F6(m,I,J) G (r Ir -u)udu-f m I J+1

0

For J1I, f>1

F6(m,I,J) frG (r jr -u)uduJ m I J+1

+ 2f udu

0

For I-1 rA)

fre-jk(rj+i1u) udu M-0

F6(m,IJ)

0 otherwise
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